These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The action of bryostatin on normal human hematopoietic progenitors is mediated by accessory cell release of growth factors.
    Author: Sharkis SJ, Jones RJ, Bellis ML, Demetri GD, Griffin JD, Civin C, May WS.
    Journal: Blood; 1990 Aug 15; 76(4):716-20. PubMed ID: 2200537.
    Abstract:
    Since enrichment of human bone-marrow hematopoietic progenitors is becoming more feasible and since purified growth factors are now available, we sought to study the action of growth factors on CD34-positive enriched cultures of human bone-marrow cells. We tested the effect of recombinant human (rh) granulocyte-macrophage colony-stimulating factor (GM-CSF), rh interleukin-3 (IL-3), or a unique biologic response modifier, bryostatin 1, on the growth of purified CD34 cells obtained by limiting dilution in single-cell cultures. We have shown previously that bryostatin 1 stimulates both myeloid and erythroid progenitors of human origin in vitro. In this study both IL-3 and GM-CSF supported colony formation from 500, 100, or single-cell cultures at equivalent plating efficiences, suggesting a direct action of these factors on hematopoietic cell growth. Conversely, bryostatin 1 did not support the growth of CD34 cells in single-cell cultures, and the cloning efficiency increased with increasing the number of cells in the culture. To test whether the indirect action of bryostatin 1 might be mediated through the production of growth factors by accessory cells, studies were performed using antibodies directed against human IL-3 and GM-CSF in culture with bryostatin 1 and normal human bone-marrow cells. Results are consistent with the hypothesis that bryostatin 1 could have a stimulatory effect on the accessory cell populations to produce either IL-3 or GM-CSF. Further support for this notion was obtained by demonstrating that T cells, which are cells known to be able to produce IL-3 and GM-CSF, are stimulated by bryostatin 1 to express messenger RNA (mRNA) for specific growth factors, including GM-CSF. These results provide further support that bryostatin 1 may be a useful clinical agent to stimulate hematopoiesis in vivo.
    [Abstract] [Full Text] [Related] [New Search]