These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lipoprotein degradation and cholesterol esterification in primary cell cultures of rabbit atherosclerotic lesions.
    Author: Jaakkola O, Nikkari T.
    Journal: Am J Pathol; 1990 Aug; 137(2):457-65. PubMed ID: 2201201.
    Abstract:
    Lipoprotein metabolism and cholesterol accumulation in atherosclerotic lesions was studied using enzymatically isolated primary cell cultures from aortas of rabbits made atherosclerotic by cholesterol feeding. The cultures consisted of macrophages and smooth muscle cells, thus resembling, in composition, fatty streak lesions. The mean (+/- SD) cholesteryl ester content of the dispersed cells was 1059 +/- 445 micrograms/mg cell protein, but it declined steeply during 1 week in primary culture. The uptake of low-density lipoprotein (LDL), beta-migrating very low-density lipoprotein (beta-VLDL), and acetylated LDL (acetyl-LDL), labeled with 125I or with the fluorescent probe 1,1'-dioctadecyl-3,3,3',3'- tetramethylindocarbocyanine (DiI), was studied in 2-day-old primary cultures. DiI-acetyl-LDL was avidly taken up by the macrophages and, to a lesser extent, by some smooth muscle cells. The uptake of DiI-beta-VLDL by the macrophages was weaker and less homogeneous than that of DiI-acetyl-LDL. The degradation rates of 125I-labeled beta-VLDL, LDL and acetyl-LDL were 135 +/- 54, 195 +/- 20, and 697 +/- 14 ng/mg cell protein/8 hours, respectively. Incubation with unlabeled acetyl-LDL enhanced the incorporation of [3H]oleate into cholesteryl esters and increased the cellular cholesteryl ester content. These results suggest that arterial macrophages and, to some extent, smooth muscle cells from cholesterol-fed rabbits actively metabolize acetyl-LDL and are thus capable of accumulating cholesteryl esters by uptake of modified forms of LDL.
    [Abstract] [Full Text] [Related] [New Search]