These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two-dimensional HPLC coupled to ICP-MS and electrospray ionisation (ESI)-MS/MS for investigating the bioavailability in vitro of arsenic species from edible seaweed. Author: Garcia-Sartal C, Taebunpakul S, Stokes E, Barciela-Alonso Mdel C, Bermejo-Barrera P, Goenaga-Infante H. Journal: Anal Bioanal Chem; 2012 Apr; 402(10):3359-69. PubMed ID: 22012212. Abstract: Edible seaweed consumption is a route of exposure to arsenic. However, little attention has been paid to estimate the bioaccessibility and/or bioavailability of arsenosugars in edible seaweed and their possible degradation products during gastrointestinal digestion. This work presents first use of combined inductively coupled plasma mass spectroscopy (ICP-MS) with electrospray ionization tandem mass spectrometry (ESI-MS/MS) with two-dimensional HPLC (size exclusion followed by anion exchange) to compare the qualitative and quantitative arsenosugars speciation of different edible seaweed with that of their bioavailable fraction as obtained using an in vitro gastrointestinal digestion procedure. Optimal extraction conditions for As species from four seaweed namely kombu, wakame, nori and sea lettuce were selected as a compromise between As extraction efficiency and preservation of compound identity. For most investigated samples, the use of ammonium acetate buffer as extractant and 1 h sonication in a water bath followed by HPLC-ICP-MS resulted in 40-61% of the total As to be found in the buffered aqueous extract, of which 86-110% was present as arsenosugars (glycerol sugar, phosphate sugar and sulfonate sugar for wakame and kombu and glycerol sugar and phosphate sugar for nori). The exception was sea lettuce, for which the arsenosugar fraction (glycerol sugar, phosphate sugar) only comprised 44% of the total extracted As. Interestingly, the ratio of arsenobetaine and dimethylarsinic acid to arsenosugars in sea lettuce extracts seemed higher than that for the rest of investigated samples. After in vitro gastrointestinal digestion, approximately 11-16% of the total As in the solid sample was found in the dialyzates with arsenosugars comprising 93-120% and 41% of the dialyzable As fraction for kombu, wakame, nori and sea lettuce, respectively. Moreover, the relative As species distribution in seaweed-buffered extracts and dialyzates was found to be very similar. Collection of specific fractions from the size-exclusion column to be analysed using anion-exchange HPLC-ESI-MS/MS enabled improved chromatographic selectivity, particularly for the less retained arsenosugar (glycerol sugar), facilitating confirmation of the presence of arsenosugars in seaweed extracts and dialyzates. Using this approach, the presence of arsenobetaine in sea lettuce samples was also confirmed.[Abstract] [Full Text] [Related] [New Search]