These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Formation of disinfection byproducts from chlor(am)ination of algal organic matter.
    Author: Yang X, Guo W, Shen Q.
    Journal: J Hazard Mater; 2011 Dec 15; 197():378-88. PubMed ID: 22019108.
    Abstract:
    Algal cells and extracellular organic matter (EOM) of two algae species, Microcystis aeruginosa (blue-green algae) and Chlorella vulgaris (green algae), were characterized. The low specific UV absorbance (SUVA) values of EOM and cells from both algae species indicated the very hydrophilic nature of algal materials. Fluorescence excitation-emission matrix showed that algal EOM and cells were enriched with protein-like and soluble microbial by-product-like matters. The formation potential of a variety of disinfection by-products (DBPs) during chlorination and chloramination of algal cells and EOM were evaluated. Algal cells and EOM of Microcystis and Chlorella exhibited a high potential for DBP formation. Yields of total DBPs varied with the algae cultivation age. Cellular materials contributed more to DBP formation than EOM. The presence of bromide led to higher concentrations of total trihalomethanes (THMs), haloacetonitriles (HANs), and halonitromethanes (HNMs). Bromide also shifted the DBPs to brominated ones. Bromine incorporation was higher in HNMs than in THMs and HANs. Compared to natural organic matter, algae under bloom seasons can contribute significantly to the DBP precursor pool.
    [Abstract] [Full Text] [Related] [New Search]