These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development and evaluation of porous materials for carbon dioxide separation and capture.
    Author: Bae YS, Snurr RQ.
    Journal: Angew Chem Int Ed Engl; 2011 Dec 02; 50(49):11586-96. PubMed ID: 22021216.
    Abstract:
    The development of new microporous materials for adsorption separation processes is a rapidly growing field because of potential applications such as carbon capture and sequestration (CCS) and purification of clean-burning natural gas. In particular, new metal-organic frameworks (MOFs) and other porous coordination polymers are being generated at a rapid and growing pace. Herein, we address the question of how this large number of materials can be quickly evaluated for their practical application in carbon dioxide separation processes. Five adsorbent evaluation criteria from the chemical engineering literature are described and used to assess over 40 MOFs for their potential in CO(2) separation processes for natural gas purification, landfill gas separation, and capture of CO(2) from power-plant flue gas. Comparisons with other materials such as zeolites are made, and the relationships between MOF properties and CO(2) separation potential are investigated from the large data set. In addition, strategies for tailoring and designing MOFs to enhance CO(2) adsorption are briefly reviewed.
    [Abstract] [Full Text] [Related] [New Search]