These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Arabidopsis β1,2-xylosyltransferase: substrate specificity and participation in the plant-specific N-glycosylation pathway. Author: Kajiura H, Okamoto T, Misaki R, Matsuura Y, Fujiyama K. Journal: J Biosci Bioeng; 2012 Jan; 113(1):48-54. PubMed ID: 22024534. Abstract: β1,2-Xylosyltransferase (XYLT) is a plant-specific glycosyltransferase that contributes to the biosynthesis of N-glycoproteins in plants. However, the specificity of XYLT for N-glycans has not yet been completely clarified. To gain insights into the function of XYLT in the plant N-glycosylation pathway, we examined the acceptor substrate specificity of recombinant Arabidopsis XYLT (AtXYLT) using 2-aminopyridine-labeled N-glycans as the substrates and confirmed the N-glycans of Arabidopsis xylt mutant. Recombinant AtXYLT expressed in insect cells required the β1,2-linked N-acetylglucosamine (GlcNAc) residue at the nonreducing terminus of the α1,3-branched mannose (Man) residue (GlcNAcβ1,2-Manα1,3-Man; GNM3B) for activity. However, AtXYLT showed decreased activity with substrates that contained α1,3-fucose at the chitobiose core-GlcNAc or a terminal GlcNAc at the α1,6-branched Man residue of GlcNAcβ1,2-Man (GlcNAcβ1,2-Manα1,6-Man; GNM3A), whose ratios were 10% and 50% of the optimal substrate, GNM3B, respectively. Moreover, AtXYLT did not show any activity in the transfer of the Xyl residue to N-glycans that contained a mammalian-type β1,4-linked galactose (Gal) residue at the nonreducing terminus of GlcNAcβ1,2-Man. These results indicate that a β1,2-linked GlcNAc residue at the nonreducing terminus of an α1,3-branched Man residue is necessary for AtXYLT activity and that mammalian-type β1,4-linked Gal residue(s) on the same branch completely inhibit(s) the activity. Furthermore, N-glycan analysis showed that approximately 30% of the N-glycans carry the Xyl residue in the wild type. These findings suggest that AtXYLT acts on protein-bound N-glycans prior to α1,3-fucosyltransferase and mannosidase II in planta.[Abstract] [Full Text] [Related] [New Search]