These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation and cytotoxicity of 2-methoxyestradiol-loaded solid lipid nanoparticles. Author: Guo X, Xing Y, Mei Q, Zhang H, Zhang Z, Cui F. Journal: Anticancer Drugs; 2012 Feb; 23(2):185-90. PubMed ID: 22027535. Abstract: The objective of this study was to prepare 2-methoxyestradiol (2-ME)-loaded solid lipid nanoparticles (SLN) by hot homogenization-ultrasonication and evaluate their cytotoxicity on three cell lines, breast cancer [Michigan Cancer Foundation-7 (MCF-7)], prostatic carcinoma (PC-3), and glioma (SK-N-SH), by the sulforhodamineB method. The particle sizes and zeta potentials of the prepared SLN were around 120 nm and -40 mV, respectively. Differential scanning calorimetry (DSC) measurements revealed that the monostearin and 2-ME existed in solid and amorphous states in the SLN prepared, respectively. The high drug entrapment efficiency (>85%) indicated that most 2-ME was incorporated in the SLN. An in-vitro drug release study showed that 2-ME was released from the SLN in a slow but time-dependent manner. The cytotoxicity of 2-ME in SLN on each cell line was significantly enhanced compared with the solution. 2-ME SLN composed of Tween80 was approximately 17-fold more effective on PC-3 cells and 6.7-fold more effective on SK-N-SH cells than in the solution, whereas a lower sensitivity was achieved on MCF-7 cells. In each cell line, the cellular uptake percentages of 2-ME in SLN were much higher than the solution, respectively. In addition, surfactants may exert different effects on the cytotoxicity of 2-ME SLN depending on the cell line. The above assay demonstrated that SLN could significantly enhance the cytotoxicity of 2-ME compared with the free drug because of the increased cellular internalization and concentration of 2-ME. The results suggested that SLN could be an excellent carrier candidate to entrap 2-ME for improving the effectiveness of tumor chemotherapy.[Abstract] [Full Text] [Related] [New Search]