These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Second-order dipolar order in magic-angle spinning nuclear magnetic resonance.
    Author: van Beek JD, Hemmi A, Ernst M, Meier BH.
    Journal: J Chem Phys; 2011 Oct 21; 135(15):154507. PubMed ID: 22029324.
    Abstract:
    Generating dipolar order under magic-angle spinning (MAS) conditions is explored for different pulse sequences and dipolar-coupling networks. It is shown that under MAS second-order dipolar order can be generated reliably with 10% to 30% efficiency using the Jeener-Broekaert sequence in systems where the second-order average Hamiltonian is a (near) constant of the motion. When using adiabatic demagnetization and remagnetization, second-order dipolar order can be generated and reverted back to Zeeman order with up to 60% efficiency. This requires a maximum field strength with a nutation frequency that is less than one-quarter of the rotor frequency, and that the spin system can be properly spinlocked under such conditions. A simple coherent description accounts for the principal features of the spin dynamics, even using the smallest possible system of three coupled spins. For the systems investigated, the lifetime of second-order dipolar order under MAS was found to be on the order of T(1).
    [Abstract] [Full Text] [Related] [New Search]