These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cloning, expression, purification, and properties of an endoglucanase gene (glycosyl hydrolase family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris.
    Author: Pham TH, Quyen DT, Nghiem NM, Vu TD.
    Journal: J Microbiol Biotechnol; 2011 Oct; 21(10):1012-20. PubMed ID: 22031024.
    Abstract:
    A gene coding for an endoglucanase (EglA), of the glycosyl hydrolase family 12 and derived from Aspergillus niger VTCC-F021, was cloned and sequenced. The cDNA sequence, 717 bp, and its putative endoglucanase, a 238 aa protein with a predicted molecular mass of 26 kDa and a pI of 4.35, exhibited 98.3-98.7% and 98.3-98.6% identities, respectively, with cDNA sequences and their corresponding endoglucanases from Aspergillus niger strains from the GenBank. The cDNA was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 1.59 U/ml culture supernatant, after 72 h of growth in a YP medium induced with 1% (v/v) of methanol. The molecular mass of the purified EglA, determined by SDS-PAGE, was 33 kDa, with a specific activity of 100.16 and 19.91 U/mg toward 1% (w/v) of beta-glucan and CMC, respectively. Optimal enzymatic activity was noted at a temperature of 55°C and a pH of 5. The recombinant EglA (rEglA) was stable over a temperature range of 30- 37°C and at pH range of 3.5-4.5. Metal ions, detergents, and solvents tested indicated a slightly inhibitory effect on rEglA activity. Kinetic constants (K(m), V(max), k(cat), and k(cat)/ K(m)) determined for rEglA with beta-glucan as a substrate were 4.04 mg/ml, 102.04 U/mg, 2,040.82 min-1, and 505.05, whereas they were 10.17 mg/ml, 28.99 U/mg, 571.71 min-1, and 57.01 with CMC as a substrate, respectively. The results thus indicate that the rEglA obtained in this study is highly specific toward beta-glucan. The biochemical properties of rEglA make it highly valuable for downstream biotechnological applications, including potential use as a feed enzyme.
    [Abstract] [Full Text] [Related] [New Search]