These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less ρ0 cells and cybrids carrying MELAS mitochondrial DNA mutation. Author: Yoshii Y, Yoneda M, Ikawa M, Furukawa T, Kiyono Y, Mori T, Yoshii H, Oyama N, Okazawa H, Saga T, Fujibayashi Y. Journal: Nucl Med Biol; 2012 Feb; 39(2):177-85. PubMed ID: 22033022. Abstract: OBJECTIVES: Radiolabeled Cu-diacetyl-bis (N(4)-methylthiosemicarbazone) (*Cu-ATSM), including (60/62/64)Cu-ATSM, is a potential imaging agent of hypoxic tumors for positron emission tomography (PET). We have reported that *Cu-ATSM is trapped in tumor cells under intracellular overreduced states, e.g., hypoxia. Here we evaluated *Cu-ATSM as an indicator of intracellular overreduced states in mitochondrial disorders using cell lines with mitochondrial dysfunction. METHODS: Mitochondrial DNA-less ρ(0)206 cells; the parental 143B human osteosarcoma cells; the cybrids carrying mutated mitochondria from a patient of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (2SD); and that carrying wild-type one (2SA) were used. Cells were treated under normoxia or hypoxia, and (64)Cu-ATSM uptake was examined to compare it with levels of biological reductant NADH and NADPH. RESULTS: ρ(0)206 cells showed higher (64)Cu-ATSM uptake than control 143B cells under normoxia, whereas (64)Cu-ATSM uptake was not significantly increased under hypoxia in ρ(0)206 cells. Additionally, (64)Cu-ATSM uptake showed correlate change to the NADH and NADPH levels, but not oxygenic conditions. 2SD cells showed increased (64)Cu-ATSM uptake under normoxia as compared with the control 2SA, and (64)Cu-ATSM uptake followed NADH and NADPH levels, but not oxygenic conditions. CONCLUSIONS: (64)Cu-ATSM accumulated in cells with overreduced states due to mitochondrial dysfunction, even under normoxia. We recently reported that (62)Cu-ATSM-PET can visualize stroke-like episodes maintaining oxygen supply in MELAS patients. Taken together, our data indicate that *Cu-ATSM uptake reflects overreduced intracellular states, despite oxygenic conditions; thus, *Cu-ATSM would be a promising marker of intracellular overreduced states for disorders with mitochondrial dysfunction, such as MELAS, Parkinson's disease and Alzheimer's disease.[Abstract] [Full Text] [Related] [New Search]