These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Author: Guo X, Kulkarni A, Doepke A, Halsall HB, Iyer S, Heineman WR. Journal: Anal Chem; 2012 Jan 03; 84(1):241-6. PubMed ID: 22035288. Abstract: A label-free biosensor for Escherichia coli (E. coli) ORN 178 based on faradaic electrochemical impedance spectroscopy (EIS) was developed. α-Mannoside or β-galactoside was immobilized on a gold disk electrode using a self-assembled monolayer (SAM) via a spacer terminated in a thiol functionality. Impedance measurements (Nyquist plot) showed shifts due to the binding of E. coli ORN 178, which is specific for α-mannoside. No significant change in impedance was observed for E. coli ORN 208, which does not bind to α-mannoside. With increasing concentrations of E. coli ORN 178, electron-transfer resistance (R(et)) increases before the sensor is saturated. After the Nyquist plot of E. coli/mixed SAM/gold electrode was modeled, a linear relationship between normalized R(et) and the logarithmic value of E. coli concentrations was found in a range of bacterial concentration from 10(2) to 10(3) CFU/mL. The combination of robust carbohydrate ligands with EIS provides a label-free, sensitive, specific, user-friendly, robust, and portable biosensing system that could potentially be used in a point-of-care or continuous environmental monitoring setting.[Abstract] [Full Text] [Related] [New Search]