These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dietary supplementation with S-adenosyl methionine delayed amyloid-β and tau pathology in 3xTg-AD mice.
    Author: Lee S, Lemere CA, Frost JL, Shea TB.
    Journal: J Alzheimers Dis; 2012; 28(2):423-31. PubMed ID: 22045486.
    Abstract:
    S-adenosyl methionine (SAM) contributes to multiple pathways in neuronal homeostasis, several of which are compromised in age-related neurodegeneration and Alzheimer's disease. Dietary supplementation of transgenic mice with SAM maintained acetylcholine levels, cognitive performance, oxidative buffering capacity, and phosphatase activity, and reduced aggression, calcium influx, endogenous PS-1 expression, γ-secretase activity, and levels of amyloid-β (Aβ) and phospho-tau. Herein, we examined whether or not SAM could delay neuropathology in 3xTg-AD mice, which harbor mutant genes for human AβPP, PS-1 and tau. Mice received a standard AIN-76 diet with or without SAM (100 mg/kg diet) for 1 month commencing at 10 months of age or for 3 months commencing at 12.5 months of age; mice were sacrificed and examined for Aβ and tau neuropathology at 11 and 15.5 months of age, respectively. SAM supplementation reduced hippocampal intracellular AβPP/Aβ and phospho-tau immunoreactivity to a similar extent at both sampling intervals. Supplementation reduced the number of extracellular Aβ deposits by 80% (p < 0.01) at 11 months of age after 1 month of treatment but only by 24% (p < 0.34) at 15.5 months of age after 3 months of treatment. As anticipated, neurofibrillary tangles were not observed in mice at these young ages; however, supplementation reduced levels of phospho-tau and caspase-cleaved tau within Sarkosyl-insoluble preparations in mice at 15.5 months of age. These limited analyses indicate that SAM can modulate the time course of AD neuropathology, and support further long-term analyses.
    [Abstract] [Full Text] [Related] [New Search]