These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Non-equilibrium spin-boson model: counting statistics and the heat exchange fluctuation theorem. Author: Nicolin L, Segal D. Journal: J Chem Phys; 2011 Oct 28; 135(16):164106. PubMed ID: 22047227. Abstract: We focus on the non-equilibrium two-bath spin-boson model, a toy model for examining quantum thermal transport in many-body open systems. Describing the dynamics within the noninteracting-blip approximation equations, applicable, e.g., in the strong system-bath coupling limit and/or at high temperatures, we derive expressions for the cumulant generating function in both the Markovian and non-Markovian limits by energy-resolving the quantum master equation of the subsystem. For a Markovian bath, we readily demonstrate the validity of a steady-state heat exchange fluctuation theorem. In the non-Markovian limit a "weaker" symmetry relation generally holds, a general outcome of microreversibility. We discuss the reduction of this symmetry relation to the universal steady-state fluctuation theorem. Using the cumulant generating function, an analytic expression for the heat current is obtained. Our results establish the validity of the steady-state heat exchange fluctuation theorem in quantum systems with strong system-bath interactions. From the practical point of view, this study provides tools for exploring transport characteristics of the two-bath spin-boson model, a prototype for a nonlinear thermal conductor.[Abstract] [Full Text] [Related] [New Search]