These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of a PCR-restriction fragment length polymorphism protocol for rapid detection and differentiation of four cockroach vectors (group I "Dirty 22" species) responsible for food contamination and spreading of foodborne pathogens: public health importance. Author: Sulaiman IM, Anderson M, Khristova M, Tang K, Sulaiman N, Phifer E, Simpson S, Kerdahi K. Journal: J Food Prot; 2011 Nov; 74(11):1883-90. PubMed ID: 22054189. Abstract: Assessing the adulteration of food products and the presence of filth and extraneous materials is one of the measures that the U.S. Food and Drug Administration (FDA) utilizes in implementing regulatory actions of public health importance. To date, 22 common pest species (also known as the "Dirty 22" species) have been regarded by this agency as the spreaders of foodborne diseases. We have further categorized the Dirty 22 species into four groups: I has four cockroach species, II has two ant species, III has 12 fly species, and IV has four rodent species. The presence of any Dirty 22 species is also considered an indicator of unsanitary conditions in food processing and storage facilities. In this study, we describe the development of a two-step nested PCR protocol to amplify the small subunit ribosomal gene of group I Dirty 22 species that include four cockroach species: Blattella germanica, Blatta orientalis, Periplaneta americana, and Supella longipalpa, along with the development of a PCR-restriction fragment length polymorphism method for rapid detection and differentiation of these violative species. This method will be utilized when the specimen cannot be identified with conventional microscopic taxonomic methods, especially when only small body parts are separated and recovered from food samples for analysis or when these body parts are in a decomposed state. This new PCR-restriction fragment length polymorphism will provide correct identification of group I Dirty 22 species; this information can then be used in regulation and prevention of foodborne pathogens.[Abstract] [Full Text] [Related] [New Search]