These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Islet graft survival and function: concomitant culture and transplantation with vascular endothelial cells in diabetic rats.
    Author: Pan X, Xue W, Li Y, Feng X, Tian X, Ding C.
    Journal: Transplantation; 2011 Dec 15; 92(11):1208-14. PubMed ID: 22067310.
    Abstract:
    BACKGROUND: Human islet transplantation is a great potential therapy for type I diabetes. To investigate islet graft survival and function, we recently showed the improved effects after co-culture and co-transplantation with vascular endothelial cells (ECs) in diabetic rats. METHODS: ECs were isolated, and the viability of isolated islets was assessed in two groups (standard culture group and co-culture group with ECs). Then streptozotocin-induced diabetic rats were divided into four groups before islet transplantation as follows: group A with infusion of islet grafts; group B with combined vascular ECs and islet grafts; groups C and D as controls with single ECs infusion and phosphate-buffered saline injection, respectively. Blood glucose and insulin concentrations were measured daily. Expression of vascular endothelial growth factor was investigated by immunohistochemical staining. The mean microvascular density was also calculated. RESULTS: More than 90% of acridine orange-propidium iodide staining positive islets demonstrated normal morphology while co-cultured with ECs for 7 days. Compared with standard control, insulin release assays showed a significantly higher simulation index in co-culture group except for the first day (P<0.05). After transplantation, there was a significant difference in concentrations of blood glucose and insulin among these groups after 3 days (P<0.05). The mean microvascular density in co-culture group was significantly higher than that in single islet group (P=0.04). CONCLUSION: Co-culture with ECs in vitro could improve the survival and function of isolated rat islet, and co-transplantation of islets with ECs could effectively prolong the islet graft survival in diabetic rats.
    [Abstract] [Full Text] [Related] [New Search]