These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thermodynamics of viscous flow and elasticity of glass forming liquids in the glass transition range. Author: Rouxel T. Journal: J Chem Phys; 2011 Nov 14; 135(18):184501. PubMed ID: 22088069. Abstract: The elastic moduli of glasses from different chemical systems, including oxide, chalcogenide, oxynitride, and metallic, were investigated through the glass transition (T(g)), typically from 0.4 to 1.3 T(g). These data were used to interpret the temperature sensitivity of the shear viscosity coefficient obtained on the same materials. The relevant Gibbs free activation energy was estimated from the apparent heat of flow by means of the temperature dependence of the shear elastic modulus. The activation entropy associated with the viscous flow was also derived and was found to correlate with the fragile versus strong character of the glass forming liquids. Finally, the physicochemistry of the flow process was described on the basis of the glass network de-structuration which shows up through the temperature dependence of Poisson's ratio, and an expression for the shear viscosity coefficient is proposed which is chiefly based on the high temperature elastic behavior.[Abstract] [Full Text] [Related] [New Search]