These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytotoxicity of serum protein-adsorbed visible-light photocatalytic Ag/AgBr/TiO2 nanoparticles. Author: Seo JH, Jeon WI, Dembereldorj U, Lee SY, Joo SW. Journal: J Hazard Mater; 2011 Dec 30; 198():347-55. PubMed ID: 22088504. Abstract: Photocytotoxicity of visible-light catalytic Ag/AgBr/TiO(2) nanoparticles (NPs) was examined both in vitro and in vivo. The Ag/AgBr/TiO(2) NPs were prepared by the deposition-precipitation method. Their crystalline structures, atomic compositions, and light absorption property were examined by X-ray diffraction (XRD) patterns, X-ray photoelectron (XPS) intensities, and ultraviolet-visible (UV-vis) diffuse reflectance spectroscopic tools. The Ag/AgBr/TiO(2) NPs appeared to be well internalized in human carcinoma cells as evidenced by transmission electron microscopy (TEM). The cytotoxicity of cetylmethylammonium bromide (CTAB) appeared to be significantly reduced by adsorption of serum proteins in the cellular medium on the NP surfaces. Two types of human cervical HeLa and skin A431 cancer cells were tested to check their viability after the cellular uptake of the Ag/AgBr/TiO(2) NPs and subsequent exposure to an illumination of visible light from a 60 W/cm(2) halogen lamp. Fluorescence images taken to label mitochondria activity suggest that the reactive oxygen species should trigger the photo-destruction of cancer cells. After applying the halogen light illumination for 50-250 min and ∼8 ppm (μg/mL) of photocatalytic Ag/AgBr/TiO(2) NPs, we observed a 40-60% selective decrease of cell viability. Ag/AgBr/TiO(2) NPs were found to eliminate xenograft tumors significantly by irradiating visible light in vivo for 10 min.[Abstract] [Full Text] [Related] [New Search]