These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Levels of kinesin light chain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer's disease: implications for axoplasmic transport. Author: Morel M, Héraud C, Nicaise C, Suain V, Brion JP. Journal: Acta Neuropathol; 2012 Jan; 123(1):71-84. PubMed ID: 22094641. Abstract: Fast anterograde and retrograde axoplasmic transports in neurons rely on the activity of molecular motors and are critical for maintenance of neuronal and synaptic functions. Disturbances of axoplasmic transport have been identified in Alzheimer's disease and in animal models of this disease, but their mechanisms are not well understood. In this study we have investigated the distribution and the level of expression of kinesin light chains (KLCs) (responsible for binding of cargos during anterograde transport) and of dynein intermediate chain (DIC) (a component of the dynein complex during retrograde transport) in frontal cortex and cerebellar cortex of control subjects and Alzheimer's disease patients. By immunoblotting, we found a significant decrease in the levels of expression of KLC1 and 2 and DIC in the frontal cortex, but not in the cerebellar cortex, of Alzheimer's disease patients. A significant decrease in the levels of synaptophysin and of tubulin-β3 proteins, two neuronal markers, was also observed. KLC1 and DIC immunoreactivities did not co-localize with neurofibrillary tangles. The mean mRNA levels of KLC1, 2 and DIC were not significantly different between controls and AD patients. In SH-SY5Y neural cells, GSK-3β phosphorylated KLC1, a change associated to decreased association of KLC1 with its cargoes. Increased levels of active GSK-3β and of phosphorylated KLC1 were also observed in AD frontal cortex. We suggest that reduction of KLCs and DIC proteins in AD cortex results from both reduced expression and neuronal loss, and that these reductions and GSK-3β-mediated phosphorylation of KLC1 contribute to disturbances of axoplasmic flows and synaptic integrity in Alzheimer's disease.[Abstract] [Full Text] [Related] [New Search]