These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular origins of commercial laser dye functionality in azacoumarins and 2-quinolones: LD 425, LD 489 and LD 473. Author: Liu X, Cole JM, Waddell PG, Lin TC. Journal: Acta Crystallogr B; 2011 Dec; 67(Pt 6):560-8. PubMed ID: 22101545. Abstract: The molecular structures of three compounds, LD 425 (C(13)H(14)N(2)O(3)) (1), LD 489 (C(15)H(15)F(3)N(2)O(2)) (2) and LD 473 (C(17)H(19)F(3)N(2)O) (3), are determined by single-crystal X-ray diffraction (XRD) at 180 K. Azacoumarins (1) and (2) possess para-quinoidal bond-length patterns in their benzene rings due to intramolecular charge transfer (ICT) from these rings to the adjoining rings. In contrast, substitution of O with N within the coumarin heterocycle, to form a 2-quinolone, results in the suppression of this ICT effect. Instead, charge transfer within the heterocycle is shown to become more pronounced. Resonance theory is employed to discuss these bond pattern differences and characteristic spectral blue shifts in relation to their coumarin analogues. The application of this theory offers an intuitive understanding of the structure-property relationships in azacoumarins and 2-quinolones which is further supported by quantum chemical calculations. Such an understanding is important for recognizing ICT mechanisms in these compounds which can then be used to facilitate the molecular design of new laser dyes with the desired spectral shifts.[Abstract] [Full Text] [Related] [New Search]