These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antimicrobial acrylic materials with in situ generated silver nanoparticles.
    Author: Oei JD, Zhao WW, Chu L, DeSilva MN, Ghimire A, Rawls HR, Whang K.
    Journal: J Biomed Mater Res B Appl Biomater; 2012 Feb; 100(2):409-15. PubMed ID: 22102276.
    Abstract:
    UNLABELLED: Polymethyl methacrylate (PMMA) is widely used to treat traumatic head injuries (cranioplasty) and orthopedic injuries (bone cement), but there is a problem with implant-centered infections. With organisms such as Acinetobacter baumannii and methicillin-resistant staphylococcus aureus developing resistance to antibiotics, there is a need for novel antimicrobial delivery mechanisms without risk of developing resistant organisms. OBJECTIVES: To develop a novel antimicrobial implant material by generating silver nanoparticles (AgNP) in situ in PMMA. RESULTS: All PMMA samples with AgNP's (AgNP-PMMA) released Ag(+) ions in vitro for over 28 days. In vitro antimicrobial assays revealed that these samples (even samples with the slowest release rate) inhibited 99.9% of bacteria against four different strains of bacteria. Long-term antimicrobial assay showed a continued antibacterial effect past 28 days. Some AgNP-loaded PMMA groups had comparable Durometer-D hardness (a measure of degree of cure) and modulus to control PMMA, but all experimental groups had slightly lower ultimate transverse strengths. CONCLUSIONS: AgNP-PMMA demonstrated a tremendously broad-spectrum and long-intermediate-term antimicrobial effect with comparable mechanical properties to control PMMA. Current efforts are focused on further improving mechanical properties by reducing AgNP loading and assessing fatigue properties.
    [Abstract] [Full Text] [Related] [New Search]