These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stimulation by polyamines of carbamylphosphate:glucose phosphotransferase and glucose-6-phosphate phosphohydrolase activities of multifunctional glucose-6-phosphatase.
    Author: Nordlie RC, Johnson WT, Cornatzer WE, Twedell GW.
    Journal: Biochim Biophys Acta; 1979 Jun 01; 585(1):12-23. PubMed ID: 221050.
    Abstract:
    The effects of added polyamines on carbamylphosphate (carbamyl-P):glucose phosphotransferase and glucose-6-phosphate (Glc-6-P) phosphohydrolase activities of rat hepatic D-Glc-6-P phosphohydrolase (EC 3.1.3.9) of intact and detergent-treated microsomes have been investigated. With the former preparation, in the presence of 1.4 mM phosphate substrate and 90 mM D-glucose (phosphotransferase), 1 mM spermine, spermidine, and putrescine activated Glc-6-P phosphohydrolase 67%, 57%, and 35%, respectively. Carbamyl-P:glucose phosphotransferase, under comparable conditions, was activated 57%, 34%, and 18%. NH+4 (0.25--5.0 mM) produced at best but a minor activation (0--14%), while poly(L-lysine) (Mr = 3400; degree of polymerization 16) equimolar relative to other polyamines with respect to ionized free amino groups activated the hydrolase 358% and the transferase 222%. Treatment of microsomes with the detergent deoxycholate reduced, but did not abolish, polyamine-induced activation. The stimulatory effects of polyamines persisted in the presence of excess catalase, indicating their independence from H2O2 formation; and were eliminated in the presence of Ca2+. Kinetic analysis revealed that all tested polyamines decreased the apparent Michaelis constant values for carbamyl-P and Glc-6-P, but had no effect on the Km for glucose. Poly(L-lysine) increased the V value for both Glc-6-P phosphohydrolase and apparent V values for phosphotransferase extrapolated to infinite concentrations of either carbamyl-P or glucose. The other tested polyamines elevated only this last velocity parameter. It is proposed that a major mechanism by which polyamines activate glucose-6-phosphatase-phosphotransferase is through their electrostatic interactions with phospholipids of the membrane of the endoplasmic reticulum of which this enzyme is a part. Conformational alterations thus induced may in turn affect catalytic behavior. It is suggested that polyamines, or similar positively charged peptides, might participate in the cellular regulation of synthetic and hydrolytic activities of glucose-6-phosphatase.
    [Abstract] [Full Text] [Related] [New Search]