These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Force-free swimming of a model helical flagellum in viscoelastic fluids.
    Author: Liu B, Powers TR, Breuer KS.
    Journal: Proc Natl Acad Sci U S A; 2011 Dec 06; 108(49):19516-20. PubMed ID: 22106263.
    Abstract:
    We precisely measure the force-free swimming speed of a rotating helix in viscous and viscoelastic fluids. The fluids are highly viscous to replicate the low Reynolds number environment of microorganisms. The helix, a macroscopic scale model for the bacterial flagellar filament, is rigid and rotated at a constant rate while simultaneously translated along its axis. By adjusting the translation speed to make the net hydrodynamic force vanish, we measure the force-free swimming speed as a function of helix rotation rate, helix geometry, and fluid properties. We compare our measurements of the force-free swimming speed of a helix in a high-molecular weight silicone oil with predictions for the swimming speed in a Newtonian fluid, calculated using slender-body theories and a boundary-element method. The excellent agreement between theory and experiment in the Newtonian case verifies the high accuracy of our experiments. For the viscoelastic fluid, we use a polymer solution of polyisobutylene dissolved in polybutene. This solution is a Boger fluid, a viscoselastic fluid with a shear-rate-independent viscosity. The elasticity is dominated by a single relaxation time. When the relaxation time is short compared to the rotation period, the viscoelastic swimming speed is close to the viscous swimming speed. As the relaxation time increases, the viscoelastic swimming speed increases relative to the viscous speed, reaching a peak when the relaxation time is comparable to the rotation period. As the relaxation time is further increased, the viscoelastic swimming speed decreases and eventually falls below the viscous swimming speed.
    [Abstract] [Full Text] [Related] [New Search]