These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4.
    Author: Xu G, Weng H, Wang Z, Dai X, Fang Z.
    Journal: Phys Rev Lett; 2011 Oct 28; 107(18):186806. PubMed ID: 22107665.
    Abstract:
    In 3D momentum space, a topological phase boundary separating the Chern insulating layers from normal insulating layers may exist, where the gap must be closed, resulting in a "Chern semimetal" state with topologically unavoidable band crossings at the Fermi level. This state is a condensed-matter realization of Weyl fermions in (3+1)D, and should exhibit remarkable features, such as magnetic monopoles and Fermi arcs. Here we predict, based on first principles calculations, that such a novel quantum state can be realized in a known ferromagnetic compound HgCr2Se4, with a single pair of Weyl fermions separated in momentum space. The quantum Hall effect without an external magnetic field can be achieved in its quantum-well structure.
    [Abstract] [Full Text] [Related] [New Search]