These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of thin film confined between two dissimilar solids on interfacial thermal resistance.
    Author: Liang Z, Tsai HL.
    Journal: J Phys Condens Matter; 2011 Dec 14; 23(49):495303. PubMed ID: 22109825.
    Abstract:
    A non-equilibrium molecular dynamics model is developed to investigate how a thin film confined between two dissimilar solids affects the thermal transport across the material interface. For two highly dissimilar (phonon frequency mismatched) solids, it is found that the insertion of a thin film between them can greatly enhance thermal transport across the material interface by a factor of 2.3 if the thin film has one of the following characteristics: (1) a multi-atom-thick thin film of which the phonon density of states (DOS) bridges the two different phonon DOSs for the solid on each side of the thin film; (2) a single-atom-thick film which is weakly bonded to the solid on both sides of the thin film. The enhanced thermal transport in the single-atom-thick film case is found mainly due to the increased inelastic scattering of phonons by the atoms in the film. However, for solid-solid interfaces with a relatively small difference in the phonon DOS, it is found that the insertion of a thin film may decrease the thermal transport.
    [Abstract] [Full Text] [Related] [New Search]