These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The polymerization and thrombin-binding properties of des-(B beta 1-42)-fibrin.
    Author: Siebenlist KR, DiOrio JP, Budzynski AZ, Mosesson MW.
    Journal: J Biol Chem; 1990 Oct 25; 265(30):18650-5. PubMed ID: 2211727.
    Abstract:
    Multiple factors affect the thrombin-catalyzed conversion of fibrinogen to fibrin, including: fibrinopeptide (FPA and FPB) release leading to exposure of two types of polymerization domains ("A" and "B," respectively) in the central portion of the molecule, and exposure of a noncatalytic "secondary" thrombin-binding site in fibrin. Fibrinogen containing the FPA sequence but lacking the B beta 1-42 sequence ("des-(B beta 1-42)-fibrinogen"), was compared to native fibrinogen (containing both FPA and FPB) to investigate the role played by B beta 1-42 in the polymerization of alpha-fibrin (i.e. fibrin lacking FPA), to compare reptilase and thrombin cleavage of FPA from fibrinogen, and to explore the location and function of the secondary thrombin-binding site. Electron microscopy of evolving polymer structures (mu, 0.14; pH 7.4) plus turbidity measurements, showed that early thin fibril formation as well as subsequent lateral fibril associations were impaired in des-(B beta 1-42)-alpha-fibrin, thus indicating that the B beta 1-42 sequence contributes to the A polymerization site. Reptilase-activated des-(B beta 1-42)-alpha-fibrin polymerized even more slowly than thrombin-activated des-(B beta 1-42)-alpha-fibrin, differences that disappeared when repolymerization of preformed fibrin monomers was carried out. Since existing data indicate that thrombin releases FPA in a concerted manner, resulting in relatively rapid evolution of fully functional divalent alpha-fibrin monomers, it can be inferred that delayed fibrin assembly of reptilase fibrin is due to slower formation of divalent alpha-fibrin monomers. Thrombin-activated des-(B beta 1-42)-alpha-fibrin polymerized more rapidly at low ionic strength (mu, 0.04) than did native alpha,beta-fibrin, a reversal of their behavior at physiological ionic strength (mu, 0.14). Concomitant measurement of FPA release revealed modest slowing of release at low ionic strength from des-(B beta 1-42)-fibrinogen (t1/2, 36.5 versus 21.5 min) and marked slowing from native fibrinogen (t1/2, 138 versus 22.2 min). This behavior correlated with increased thrombin binding to native alpha,beta-fibrin at low ionic strength, coupled with weak thrombin binding to des-(B beta 1-42)-alpha-fibrin, and indicates that secondary thrombin binding plays an important role in regulating thrombin diffusion and catalytic activity. Des-(B beta 1-42)-fibrinogen lacks or has a markedly defective secondary thrombin-binding site, from which we conclude that the B beta 15-42 sequence in fibrin plays a major role in forming or providing this site.
    [Abstract] [Full Text] [Related] [New Search]