These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dietary n-6 polyunsaturated fatty acid deprivation increases docosahexaenoic acid metabolism in rat brain.
    Author: Igarashi M, Kim HW, Chang L, Ma K, Rapoport SI.
    Journal: J Neurochem; 2012 Mar; 120(6):985-97. PubMed ID: 22117540.
    Abstract:
    Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.
    [Abstract] [Full Text] [Related] [New Search]