These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel micelle of coumarin derivative monoend-functionalized PEG for anti-tumor drug delivery: in vitro and in vivo study.
    Author: Lai Y, Long Y, Lei Y, Deng X, He B, Sheng M, Li M, Gu Z.
    Journal: J Drug Target; 2012 Apr; 20(3):246-54. PubMed ID: 22118403.
    Abstract:
    In this paper, a novel micelle for anti-tumor drug delivery was reported. Two 7-carboxymethoxy coumarin molecules were immobilized on the terminal group of a methoxy poly(ethylene glycol) chain via l-lysine as linker. The amphiphilic 7-carboxymethoxy coumarin monoend-functionalized methoxy poly(ethylene glycol) (mPEG-Lys-DCOU) chains were self-assembled micelles. Anti-tumor drug doxorubicin was loaded in the mPEG-Lys-DCOU micelles and the release profile was studied. The cytotoxicity of mPEG-Lys-DCOU was evaluated by NIH 3T3 fibroblasts. The drug-loaded micelles were incubated with HepG2 tumor cells to investigate the in vitro anti-tumor effect. The in vivo inhibition efficacy of drug-loaded micelles was carried out on 4T1 breast cancer animal model. The results showed that both hydrophobic and π-π stacking interactions within mPEG-Lys-DCOU amphiphiles were contributed to the self-assembly. Both blank and drug loaded micelles were monodisperse nanoparticles with the average diameters around 300 nm. The release profile exhibited certain pH dependence. The drug release rate at pH = 5.5 was much faster than that at pH = 7.4. mPEG-Lys-DCOU amphiphiles were non-toxic to NIH 3T3 fibroblasts. Both in vitro and in vivo studies demonstrated that the inhibition efficacy of drug-loaded micelles were comparable to that of doxorubicin hydrochloride. mPEG-Lys-DCOU micelles are promising carriers for anti-tumor drug delivery.
    [Abstract] [Full Text] [Related] [New Search]