These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucuronidation of hydroxylated polybrominated diphenyl ethers and their modulation of estrogen UDP-glucuronosyltransferases. Author: Lai Y, Lu M, Lin S, Cai Z. Journal: Chemosphere; 2012 Feb; 86(7):727-34. PubMed ID: 22119418. Abstract: Polybrominated diphenyl ethers (PBDEs) can be metabolically converted to their hydroxylated metabolites (OH-PBDEs). The estrogenic effects of PBDEs may be mediated by OH-PBDEs, but the mechanisms of which are still not understood. This study investigated the glucuronidation of 11 OH-PBDEs and their potential in modulating UDP-glucuronosyltransferases (UGTs) activity of 17β-estradiol (E2) in rat liver microsomes. The number of bromine atoms at phenolic ring was observed as the most influential factor of OH-PBDEs glucuronidation. 2'-OH-BDE-28 having one bromine atom at phenolic ring showed the fastest metabolic rates with t(1/2) value of 3.86 min, while 6-OH-BDE-137 having four bromine atoms at phenolic ring was the poorest substrate with t(1/2) value over 60 min. Regarding to the modulation of E2-UGTs activity, the phenolic hydroxyl group in OH-PBDEs played an essential role. Depending on the substitution patterns of bromine and hydroxyl group, OH-PBDEs inhibited or stimulated E2-UGTs activity. Ten of OH-PBDEs inhibited both 3-glucuronidation and 17-glucuronidation of E2 with IC(50) values varying from 3.80 to 129.38 μM, while 3'-OH-BDE-100 exhibited stimulating effects on 3-glucuronidation with EC(50) value of 35.95 μM. Kinetic analysis suggested noncompetitive inhibition mode of E2 glucuronidation by 3'-OH-BDE-7, 6-OH-BDE-47 and 2'-OH-BDE-68 with K(i) values varying from 11.95 to 67.22 μM. This study demonstrated OH-PBDEs exhibited large interindividual differences in glucuronidation and modulation of E2-UGTs activity. By inhibiting the formation of E2 glucuronidation, OH-PBDEs may increase E2 bioavailability in target tissue, thereby exerting an indirect estrogenic effect.[Abstract] [Full Text] [Related] [New Search]