These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular dynamics simulations of membranes composed of glycolipids and phospholipids. Author: Kapla J, Stevensson B, Dahlberg M, Maliniak A. Journal: J Phys Chem B; 2012 Jan 12; 116(1):244-52. PubMed ID: 22122018. Abstract: Lipid membranes composed of 1,2-di-(9Z,12Z,15Z)-octadecatrienoyl-3-O-β-D-galactosyl-sn-glycerol or monogalactosyldiacylglycerol (MGDG) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were studied by means of molecular dynamics (MD) computer simulations. Three lipid compositions were considered: 0%, 20%, and 45% MGDG (by mole) denoted as MG-0, MG-20, and MG-45, respectively. The article is focused on the calculation of NMR dipolar interactions, which were confronted with previously reported experimental couplings. Dynamical processes and orientational distributions relevant for the averaging of dipolar interactions were evaluated. Furthermore, several parameters important for characterization of the bilayer structure, molecular organization, and dynamics were investigated. In general, only a minor change in DMPC properties was observed upon the increased MGDG/DMPC ratio, whereas properties related to MGDG undergo a more pronounced change. This effect was ascribed to the fact that DMPC is a bilayer (L(α)) forming lipid, whereas MGDG prefers a reverse hexagonal (H(II)) arrangement.[Abstract] [Full Text] [Related] [New Search]