These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuroprotective effects of caffeic acid phenethyl ester on experimental traumatic brain injury in rats. Author: Kerman M, Kanter M, Coşkun KK, Erboga M, Gurel A. Journal: J Mol Histol; 2012 Feb; 43(1):49-57. PubMed ID: 22124729. Abstract: The aim of this study was to evaluate the therapeutic efficacy of caffeic acid phenethyl ester (CAPE) with an experimental traumatic brain injury (TBI) model in rats. Twenty-four adult male Sprague-Dawley rats were randomly divided into three groups of 8 rats each: control, TBI, and TBI + CAPE treatment. In TBI and TBI + CAPE treatment groups, a cranial impact was delivered to the skull from a height of 7 cm at a point just in front of the coronal suture and over the right hemisphere. Rats were sacrificed at 4 h after the onset of injury. Brain tissues were removed for biochemical and histopathological investigation. To date, no biochemical and histopathological changes of neurodegeneration in the frontal cortex after TBI in rats by CAPE treatment have been reported. The TBI significantly increased tissue malondialdehyde (MDA) levels, and significantly decreased tissue superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, but not tissue catalase (CAT) activity, when compared with controls. The administration of a single dose of CAPE (10 μmol/kg) 15 min after the trauma has shown protective effect via decreasing significantly the elevated MDA levels and also significantly increasing the reduced antioxidant enzyme (SOD and GPx) activities, except CAT activity. In the TBI group, severe degenerative changes, shrunken cytoplasma and extensively dark picnotic nuclei in neurons, as well as vacuolization indicating tissue edema formation. The morphology of neurons in the CAPE treatment group was well protected. The number of neurons in the trauma alone group was significantly less than that of both the control and TBI +CAPE treatment groups. The caspase 3 immunopositivity was increased in degenerating neurons of the traumatic brain tissue. Treatment of CAPE markedly reduced the immunoreactivity of degenerating neurons. TBI caused severe degenerative changes, shrunken cytoplasma, severely dilated cisternae of endoplasmic reticulum, markedly swollen mitochondria with degenerated cristae and nuclear membrane breakdown with chromatin disorganization in neurons of the frontal cortex. In conclusion, the CAPE treatment might be beneficial in preventing trauma-induced oxidative brain tissue damage, thus showing potential for clinical implications. We believe that further preclinical research into the utility of CAPE may indicate its usefulness as a potential treatment on neurodegeneration after TBI in rats.[Abstract] [Full Text] [Related] [New Search]