These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reaction of cis-3-chloroacrylic acid dehalogenase with an allene substrate, 2,3-butadienoate: hydration via an enamine.
    Author: Schroeder GK, Johnson WH, Huddleston JP, Serrano H, Johnson KA, Whitman CP.
    Journal: J Am Chem Soc; 2012 Jan 11; 134(1):293-304. PubMed ID: 22129074.
    Abstract:
    cis-3-Chloroacrylic acid dehalogenase (cis-CaaD) catalyzes the hydrolytic dehalogenation of cis-3-haloacrylates to yield malonate semialdehyde. The enzyme processes other substrates including an allene (2,3-butadienoate) to produce acetoacetate. In the course of a stereochemical analysis of the cis-CaaD-catalyzed reaction using this allene, the enzyme was unexpectedly inactivated in the presence of NaBH(4) by the reduction of a covalent enzyme-substrate bond. Covalent modification was surprising because the accumulated evidence for cis-CaaD dehalogenation favored a mechanism involving direct substrate hydration mediated by Pro-1. However, the results of subsequent mechanistic, pre-steady state and full progress kinetic experiments are consistent with a mechanism in which an enamine forms between Pro-1 and the allene. Hydrolysis of the enamine or an imine tautomer produces acetoacetate. Reduction of the imine species is likely responsible for the observed enzyme inactivation. This is the first reported observation of a tautomerase superfamily member functioning by covalent catalysis. The results may suggest that some fraction of the cis-CaaD-catalyzed dehalogenation of cis-3-haloacrylates also proceeds by covalent catalysis.
    [Abstract] [Full Text] [Related] [New Search]