These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polymorphism and spin crossover in mononuclear Fe(II) species containing new dipyridylamino-substituted s-triazine ligands. Author: Ross TM, Moubaraki B, Neville SM, Batten SR, Murray KS. Journal: Dalton Trans; 2012 Feb 07; 41(5):1512-23. PubMed ID: 22143200. Abstract: Four new dipyridylamino-substituted s-triazine ligands DBB (N(2),N(2),N(4),N(4)-tetrabenzyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), DDB (N(2),N(2),N(4),N(4)-tetrabutyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), DCCl (6-chloro-N(2),N(2)-dicyclohexyl-N(4),N(4)-di(pyridin-2-yl)-1,3,5-triazine-2,4-diamine) and DDT (N(2),N(2),N(4),N(4)-tetraphenyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine), have been incorporated into eight new, 0D Fe(II) compounds of type [Fe(II)(NCX)(2)(L)(2)]·Solvent (where NCX = NCS(-), NCSe(-) or N(CN)(2)(-)). The polymorphic compounds α-trans-[Fe(II)(NCS)(2)(DBB)(2)] (1) and β-trans-[Fe(II)(NCS)(2)(DBB)(2)] (2) display, respectively, a relatively abrupt, complete, one-step spin transition with T(½) ~ 170 K, and a more gradual, complete, one-step spin transition with T(½) ~ 300 K. Gradual, one-step spin transitions are observed for trans-[Fe(II)(N(CN)(2))(2)(DBB)(2)]·2CH(3)CH(2)OH (3) and trans-[Fe(II)(NCSe)(2)(DCCl)(2)]·2CH(3)OH (6) with T(½) ~ 280 K for both, while the one-step spin transition observed for a desolvated sample of trans-[Fe(II)(NCSe)(2)(DDB)(2)]·2CH(3)OH (4) is relatively abrupt, showing hysteresis with T(½↑) = 285 K and T(½↓) = 275 K. The compounds cis-[Fe(II)(NCS)(2)(DDB)(2)] (5) and trans-[Fe(II)(NCS)(2)(DDT)(2)]·4CH(2)Cl(2) (7) remain high spin, while structural data on trans-[Fe(II)(NCSe)(2)(DDT)(2)]·4CH(2)Cl(2) (8) suggests a spin transition at low temperatures. It is likely that distortion of the Fe(II)N(6) octahedron, intermolecular interactions and molecular conformation are crucial in deciding both the T(½) and abruptness of the spin transition for these species, although the nature of their influence varies. Variable temperature powder X-ray diffraction measurements on the polymorphs 1 and 2 reveal anisotropy in the unit cell parameters as the spin transition occurs.[Abstract] [Full Text] [Related] [New Search]