These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Redox-controlled interconversion between trigonal prismatic and octahedral geometries in a monodithiolene tetracarbonyl complex of tungsten.
    Author: Yan Y, Chandrasekaran P, Mague JT, DeBeer S, Sproules S, Donahue JP.
    Journal: Inorg Chem; 2012 Jan 02; 51(1):346-61. PubMed ID: 22145751.
    Abstract:
    The tetracarbonyl compounds [W(mdt)(CO)(4)] (1) and [W(Me(2)pipdt)(CO)(4)] (2) both have dithiolene-type ligands (mdt(2-) = 1,2-dimethyl-1,2-dithiolate; Me(2)pipdt = 1,4-dimethylpiperazine-2,3-dithione) but different geometries, trigonal prismatic (TP) and octahedral, respectively. Structural data suggest an ene-1,2-dithiolate ligand description, hence a divalent tungsten ion, for 1 and a dithioketone ligand, hence W(0) oxidation state, for 2. Density functional theory (DFT) calculations on 1 show the highest occupied molecular orbital (HOMO) to be a strong W-dithiolene π bonding interaction and the lowest unoccupied molecular orbital (LUMO) its antibonding counterpart. The TP geometry is preferred because symmetry allowed mixing of these orbitals via a configuration interaction (CI) stabilizes this geometry over an octahedron. The TP geometry for 2 is disfavored because W-dithiolene π overlap is attenuated because of a lowering of the sulfur content and a raising of the energy of this ligand π orbital by the conjugated piperazine nitrogen atoms in the Me(2)pipdt ligand. A survey of the Cambridge Structural Database identifies other W(CO)(4) compounds with pseudo C(4v) disposition of CO ligands and suggests a d(4) electron count to be a probable common denominator. Reduction of 1 induces a geometry change to octahedral because the singly occupied molecular orbital (SOMO) is at lower energy in this geometry. The cyclic voltammogram of 1 in CH(2)Cl(2) reveals a reduction wave at -1.14 V (vs Fc(+)/Fc) with an unusual offset between the cathodic and the anodic peaks (ΔE(p)) of 0.130 V, which is followed by a second, reversible reduction wave at -1.36 V with ΔE(p) = 0.091 V. The larger ΔE(p) observed for the first reduction is evidence of the trigonal prism-to-octahedron geometry change attending this process. Tungsten L(1)-edge X-ray absorption (XAS) data indicate a higher metal oxidation state in 1 than 2. Electron paramagnetic resonance data for [1](-) and [2](-) are both diagnostic of dithiolene ligand-based sulfur radical, indicating that one-electron reduction of 1 involves two-electron reduction of tungsten and one-electron oxidation of dithiolene ligand.
    [Abstract] [Full Text] [Related] [New Search]