These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cytochrome c peroxidase. Interconversion of chemically and enzymatically reactive and unreactive forms of the ferric protein.
    Author: Mathews RA, Wittenberg JB.
    Journal: J Biol Chem; 1979 Jul 10; 254(13):5991-6. PubMed ID: 221487.
    Abstract:
    Ferric yeast cytochrome c peroxidase in the presence of different anions may assume a number of forms which differ in optical spectra and chemical properties. In solutions whose only anion is acetate, two spectral forms are present together in an equilibrium. Each of these spectral species is believed to bear bound acetate anion. A form characterized by an intense absorption maximum at 620 nm is unreactive enzymatically and does not react with hydrogen peroxide or with dithionite. A form characterized by a less intense absorption near 645 nm is enzymatically and chemically reactive. Increasing temperature and increasing pH displace the equilibrium toward the 645 nm form. Increasing cytochrome c peroxidase concentration favors the 620 nm form. In kinetic experiments in which the 645 nm form is removed by rapid reaction with H2O2 or dithionite, the 620 nm form is converted in a first order reaction (k = 0.36 s-1, 15 degrees C) to the 645 nm form. In solutions whose sole anion is phosphate a 645 nm form is the only demonstrable spectral species. The enzymatic activity and rates of chemical reaction of 645 nm spectral forms occurring in acetate and in phosphate buffers are the same.
    [Abstract] [Full Text] [Related] [New Search]