These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantification of myocardium at risk in myocardial perfusion SPECT by co-registration and fusion with delayed contrast-enhanced magnetic resonance imaging--an experimental ex vivo study.
    Author: Ugander M, Soneson H, Engblom H, van der Pals J, Erlinge D, Heiberg E, Arheden H.
    Journal: Clin Physiol Funct Imaging; 2012 Jan; 32(1):33-8. PubMed ID: 22152076.
    Abstract:
    BACKGROUND: Myocardial perfusion single-photon emission computed tomography (MPS) can be used to assess myocardium at risk in occlusive coronary ischaemia. The aim was to develop a method to quantify myocardium at risk as perfusion defect size on ex vivo MPS using co-registration and fusion with ex vivo magnetic resonance imaging (MRI). METHODS: Pigs (n = 19) were injected 99mTc-tetrofosmin prior to concluding 40 min of coronary artery occlusion, followed by reperfusion and MRI contrast injection. The excised heart was imaged with T1-weighted MRI and MPS, and images were co-registered using freely available software (Segment v1.8, http://segment.heiberg.se). The left ventricle was semi-automatically delineated in MRI and copied to MPS. The threshold for a MPS perfusion defect was defined as the mean counts in the MPS image at the MRI-determined border between remote myocardium and air. The threshold was measured using count maxima set to the 100th-95th percentile of counts within the myocardium. The count maximum that gave the lowest threshold variability (SD) was considered the most robust. RESULTS: A count maximum using the 100th percentile yielded a threshold of (mean ± SD) 55 ± 6·2%. This method showed the lowest SD compared to 99th-95th percentile count maxima (6·6-7·2%). CONCLUSIONS: We describe a method for objective quantification of myocardium at risk as perfusion defect size on MPS using knowledge of the anatomy of the myocardium from co-registered MRI. This enables simultaneous quantification of myocardium at risk by MPS and infarct size by MRI for the evaluation of treatments for myocardial infarction.
    [Abstract] [Full Text] [Related] [New Search]