These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: c-Jun N-terminal kinase 2 phosphorylates endothelial nitric oxide synthase at serine 116 and regulates nitric oxide production.
    Author: Park JH, Park M, Byun CJ, Jo I.
    Journal: Biochem Biophys Res Commun; 2012 Jan 06; 417(1):340-5. PubMed ID: 22155232.
    Abstract:
    The c-Jun N-terminal kinases (JNKs) belonging to the mitogen-activated protein kinase (MAPK) superfamily play important roles in foam-cell formation, hypercholesterolemia-mediated endothelial dysfunction, and the development of obesity. Although decreased nitric oxide (NO) production via decreased phosphorylation of endothelial NO synthase at serine 1179 (eNOS-Ser(1179)) was reported to be partly involved in JNK2-derived endothelial dysfunction, JNK2 seems likely to be indirectly involved in this signaling pathway. Here, using bovine aortic endothelial cells, we examined whether JNK2 directly phosphorylated eNOS-Ser(116), a putative substrate site for the MAPK superfamily, and this phosphorylation resulted in decreased NO release. JNK inhibitor SP60012 increased NO release in a time- and dose-dependent manner, which was accompanied by increased eNOS-Ser(116) phosphorylation. Purified JNK2 directly phosphorylated eNOS-Ser(116)in vitro. Ectopic expression of dominant negative JNK2 repressed eNOS-Ser(116) phosphorylation and increased NO production. Coimmunoprecipitation and confocal microscopy studies revealed a colocalization of eNOS and JNK2. However, all these observed effects were not manifested when JNK1 probes were used. Overall, this study indicates that JNK2 is a physiological kinase responsible for eNOS-Ser(116) phosphorylation and regulates NO production.
    [Abstract] [Full Text] [Related] [New Search]