These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Negative pressure wound therapy-associated tissue trauma and pain: a controlled in vivo study comparing foam and gauze dressing removal by immunohistochemistry for substance P and calcitonin gene-related peptide in the wound edge.
    Author: Malmsjö M, Gustafsson L, Lindstedt S, Ingemansson R.
    Journal: Ostomy Wound Manage; 2011 Dec; 57(12):30-5. PubMed ID: 22156176.
    Abstract:
    Pain upon negative pressure wound therapy (NPWT) dressing removal has been reported and is believed to be associated with the observation that granulation tissue grows into foam. Wound tissue damage upon removal of the foam may cause the reported pain. Calcitonin gene-related peptide (CGRP) and substance P are neuropeptides that cause inflammation and signal pain and are known to be released when tissue trauma occurs. The aim of this controlled in vivo study was to compare the expression of CGRP and substance P in the wound bed in control wounds and following NPWT and foam or gauze dressing removal. Eight pigs with two wounds each were treated with open-pore structure polyurethane foam or AMD gauze and NPWT of 0 (control) or -80 mm Hg for 72 hours. Following removal of the wound filler, the expression of CGRP and substance P was measured, using arbitrary units, in sections of biopsies from the wound bed using immunofluorescence techniques. Substance P and CGRP were more abundant in the wound edge following the removal of foam than of gauze dressings and least abundant in control wounds. The immunofluorescence staining of the wound edge for CGRP was 52 ± 3 au after the removal of gauze and 97 ± 5 au after the removal of foam (P <0.001). For substance P, the staining was 55 ± 3 au after gauze removal and 95 ± 4 au after foam removal (P <0.001). CGRP and substance P staining was primarily located to nerves and leukocytes. The increase in CGRP and substance P immunofluorescence was especially prominent in the dermis but also was seen in subcutaneous and muscle tissue. Using gauze may be one way of reducing NPWT dressing change-related pain. New wound fillers designed to optimize granulation tissue formation and minimize pain issues presumably will be developed in the near future.
    [Abstract] [Full Text] [Related] [New Search]