These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional binding of hexanucleotides to 3C protease of hepatitis A virus.
    Author: Blaum BS, Wünsche W, Benie AJ, Kusov Y, Peters H, Gauss-Müller V, Peters T, Sczakiel G.
    Journal: Nucleic Acids Res; 2012 Apr; 40(7):3042-55. PubMed ID: 22156376.
    Abstract:
    Oligonucleotides as short as 6 nt in length have been shown to bind specifically and tightly to proteins and affect their biological function. Yet, sparse structural data are available for corresponding complexes. Employing a recently developed hexanucleotide array, we identified hexadeoxyribonucleotides that bind specifically to the 3C protease of hepatitis A virus (HAV 3C(pro)). Inhibition assays in vitro identified the hexanucleotide 5'-GGGGGT-3' (G(5)T) as a 3C(pro) protease inhibitor. Using (1)H NMR spectroscopy, G(5)T was found to form a G-quadruplex, which might be considered as a minimal aptamer. With the help of (1)H, (15)N-HSQC experiments the binding site for G(5)T was located to the C-terminal β-barrel of HAV 3C(pro). Importantly, the highly conserved KFRDI motif, which has previously been identified as putative viral RNA binding site, is not part of the G(5)T-binding site, nor does G(5)T interfere with the binding of viral RNA. Our findings demonstrate that sequence-specific nucleic acid-protein interactions occur with oligonucleotides as small as hexanucleotides and suggest that these compounds may be of pharmaceutical relevance.
    [Abstract] [Full Text] [Related] [New Search]