These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification and biochemical characterization of a highly thermostable xylanase from Actinomadura sp. strain Cpt20 isolated from poultry compost. Author: Taibi Z, Saoudi B, Boudelaa M, Trigui H, Belghith H, Gargouri A, Ladjama A. Journal: Appl Biochem Biotechnol; 2012 Feb; 166(3):663-79. PubMed ID: 22161140. Abstract: An extracellular thermostable xylanase from a newly isolated thermophilic Actinomadura sp. strain Cpt20 was purified and characterized. Based on matrix-assisted laser desorption-ionization time-of-flight mass spectrometry analysis, the purified enzyme is a monomer with a molecular mass of 20,110.13 Da. The 19 residue N-terminal sequence of the enzyme showed 84% homology with those of actinomycete endoxylanases. The optimum pH and temperature values for xylanase activity were pH 10 and 80 °C, respectively. This xylanase was stable within a pH range of 5-10 and up to a temperature of 90 °C. It showed high thermostability at 60 °C for 5 days and half-life times at 90 °C and 100 °C were 2 and 1 h, respectively. The xylanase was specific for xylans, showing higher specific activity on soluble oat-spelt xylan followed by beechwood xylan. This enzyme obeyed the Michaelis-Menten kinetics, with the K (m) and k (cat) values being 1.55 mg soluble oat-spelt xylan/ml and 388 min(-1), respectively. While the xylanase from Actinomadura sp. Cpt20 was activated by Mn(2+), Ca(2+), and Cu(2+), it was, strongly inhibited by Hg(2+), Zn(2+), and Ba(2+). These properties make this enzyme a potential candidate for future use in biotechnological applications particularly in the pulp and paper industry.[Abstract] [Full Text] [Related] [New Search]