These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics.
    Author: Reichwaldt ES, Ghadouani A.
    Journal: Water Res; 2012 Apr 01; 46(5):1372-93. PubMed ID: 22169160.
    Abstract:
    Toxic cyanobacterial blooms represent a serious hazard to environmental and human health, and the management and restoration of affected waterbodies can be challenging. While cyanobacterial blooms are already a frequent occurrence, in the future their incidence and severity are predicted to increase due to climate change. Climate change is predicted to lead to increased temperature and changes in rainfall patterns, which will both have a significant impact on inland water resources. While many studies indicate that a higher temperature will favour cyanobacterial bloom occurrences, the impact of changed rainfall patterns is widely under-researched and therefore less understood. This review synthesizes the predicted changes in rainfall patterns and their potential impact on inland waterbodies, and identifies mechanisms that influence the occurrence and severity of toxic cyanobacterial blooms. It is predicted that there will be a higher frequency and intensity of rainfall events with longer drought periods in between. Such changes in the rainfall patterns will lead to favourable conditions for cyanobacterial growth due to a greater nutrient input into waterbodies during heavy rainfall events, combined with potentially longer periods of high evaporation and stratification. These conditions are likely to lead to an acceleration of the eutrophication process and prolonged warm periods without mixing of the water column. However, the frequent occurrence of heavy rain events can also lead to a temporary disruption of cyanobacterial blooms due to flushing and de-stratification, and large storm events have been shown to have a long-term negative effect on cyanobacterial blooms. In contrast, a higher number of small rainfall events or wet days can lead to proliferation of cyanobacteria, as they can rapidly use nutrients that are added during rainfall events, especially if stratification remains unchanged. With rainfall patterns changing, cyanobacterial toxin concentration in waterbodies is expected to increase. Firstly, this is due to accelerated eutrophication which supports higher cyanobacterial biomass. Secondly, predicted changes in rainfall patterns produce more favourable growth conditions for cyanobacteria, which is likely to increase the toxin production rate. However, the toxin concentration in inland waterbodies will also depend on the effect of rainfall events on cyanobacterial strain succession, a process that is still little understood. Low light conditions after heavy rainfall events might favour non-toxic strains, whilst inorganic nutrient input might promote the dominance of toxic strains in blooms. This review emphasizes that the impact of changes in rainfall patterns is very complex and will strongly depend on the site-specific dynamics, cyanobacterial species composition and cyanobacterial strain succession. More effort is needed to understand the relationship between rainfall patterns and cyanobacterial bloom dynamics, and in particular toxin production, to be able to assess and mediate the significant threat cyanobacterial blooms pose to our water resources.
    [Abstract] [Full Text] [Related] [New Search]