These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Defects in mitochondrial DNA replication and human disease.
    Author: Copeland WC.
    Journal: Crit Rev Biochem Mol Biol; 2012; 47(1):64-74. PubMed ID: 22176657.
    Abstract:
    Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease.
    [Abstract] [Full Text] [Related] [New Search]