These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Peroxisome proliferator-activated receptor-γ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress.
    Author: Martín A, Pérez-Girón JV, Hernanz R, Palacios R, Briones AM, Fortuño A, Zalba G, Salaices M, Alonso MJ.
    Journal: J Hypertens; 2012 Feb; 30(2):315-26. PubMed ID: 22179086.
    Abstract:
    AIMS: Hypertension is associated with increased plasma inflammatory markers such as cytokines and increased vascular cyclooxygenase-2 (COX-2) expression. The ability of peroxisome proliferator-activated receptor-γ (PPARγ) agonists to reduce oxidative stress seems to contribute to their anti-inflammatory properties. This study analyzes the effect of pioglitazone, a PPARγ agonist, on interleukin-1β-induced COX-2 expression and the role of reactive oxygen species (ROS) on this effect. METHODS AND RESULTS: Vascular smooth muscle cells from hypertensive rats stimulated with interleukin-1β (10 ng/ml, 24 h) were used. Interleukin-1β increased: 1) COX-2 protein and mRNA levels; 2) protein and mRNA levels of the NADPH oxidase subunit NOX-1, NADPH oxidase activity and ROS production; and 3) phosphorylation of inhibitor of nuclear factor kappa B (IκB) kinase (IKK) nuclear expression of the p65 nuclear factor kappa B (NF-κB) subunit and cell proliferation, all of which were reduced by apocynin (30 μmol/l). Interleukin-1β-induced COX-2 expression was reduced by apocynin, tempol (10 μmol/l), catalase (1000 U/ml) and lactacystin (5 μmol/l). Moreover, H2O2 (50 μmol/l, 90 min) induced COX-2 expression, which was reduced by lactacystin. Pioglitazone (10 μmol/l) reduced the effects of interleukin-1β on: 1) COX-2 protein and mRNA levels; 2) NOX-1 protein and mRNA levels, NADPH oxidase activity and ROS production; and 3) p-IKK, p65 expressions and cell proliferation. Pioglitazone also reduced the H2O2-induced COX-2 expression and increased Cu/Zn and Mn-superoxide dismutase protein expression. PPARγ small interfering RNA (5 nmol/l) further increased interleukin-1β-induced COX-2 and NOX-1 mRNA levels. In addition, pioglitazone increased the interleukin-1β-induced PPARγ mRNA levels. CONCLUSION: PPARγ activation with pioglitazone reduces interleukin-1β-induced COX-2 expression by interference with the redox-sensitive transcription factor NF-κB.
    [Abstract] [Full Text] [Related] [New Search]