These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma.
    Author: Tian Y, Nan Y, Han L, Zhang A, Wang G, Jia Z, Hao J, Pu P, Zhong Y, Kang C.
    Journal: Int J Oncol; 2012 Apr; 40(4):1105-12. PubMed ID: 22179124.
    Abstract:
    The microRNA miR-451 is downregulated in gliomas, this has been suggested by several different research groups and is consistent with our data. Our previous study also confirmed that miR-451 has a repressive role in glioma by inhibiting cell growth, proliferation and by inducing cell apoptosis. In the present study, we identified a target gene of miR-451 in human glioma and investigated the mechanism for the glioma suppressive effect of miR-451 functions. Expression of miR-451 in gliomas was identified by quantitative real-time PCR and fluorescence in situ hybridization. Human glioma cell lines (U251, U87, LN229 and A172) were transfected with miR-451 mimics to restore miR-451 expression. The tumor suppressive effects of miR-451 were further verified by subcutaneous assays in nude mice, in addition to our previous in vitro data. A candidate target gene was tested by Western blotting and luciferase reporter assays. Some PI3K/AKT pathway factors were tested by Western blotting. We found that miR-451 expression was downregulated in glioma samples and was inversely correlated with WHO grades of gliomas. In vivo assays confirmed that miR-451 had tumor suppressive traits. CAB39-3'UTR luciferase reporter assay confirmed CAB39 as a direct target gene of miR-451. Significant alterations in the expression of PI3K/AKT pathway factors were observed by Western blot assays. We conclude that miR-451 represses glioma in vitro and in vivo, likely through targeting CAB39 directly and inhibiting the PI3K/AKT pathway indirectly.
    [Abstract] [Full Text] [Related] [New Search]