These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of aspect ratio on vortex distribution and heat transfer in rotating Rayleigh-Bénard convection. Author: Stevens RJ, Overkamp J, Lohse D, Clercx HJ. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056313. PubMed ID: 22181504. Abstract: Numerical and experimental data for the heat transfer as a function of the Rossby number Ro in turbulent rotating Rayleigh-Bénard convection are presented for the Prandtl number Pr=4.38 and the Rayleigh number Ra=2.91×10(8) up to Ra=4.52×10(9). The aspect ratio Γ≡D/L, where L is the height and D the diameter of the cylindrical sample, is varied between Γ=0.5 and 2.0. Without rotation, where the aspect ratio influences the global large-scale circulation, we see a small-aspect-ratio dependence in the Nusselt number for Ra=2.91×10(8). However, for stronger rotation, i.e., 1/Ro>>1/Ro(c), the heat transport becomes independent of the aspect ratio. We interpret this finding as follows: In the rotating regime the heat is mainly transported by vertically aligned vortices. Since the vertically aligned vortices are local, the aspect ratio has a negligible effect on the heat transport in the rotating regime. Indeed, a detailed analysis of vortex statistics shows that the fraction of the horizontal area that is covered by vortices is independent of the aspect ratio when 1/Ro>>1/Ro(c). In agreement with the results of Weiss et al. [Phys. Rev. Lett. 105, 224501 (2010)], we find a vortex-depleted area close to the sidewall. Here we show that there is also an area with enhanced vortex concentration next to the vortex-depleted edge region and that the absolute widths of both regions are independent of the aspect ratio.[Abstract] [Full Text] [Related] [New Search]