These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells.
    Author: Wang Y, Sun T, Paudel T, Zhang Y, Ren Z, Kempa K.
    Journal: Nano Lett; 2012 Jan 11; 12(1):440-5. PubMed ID: 22185407.
    Abstract:
    We show that a planar structure, consisting of an ultrathin semiconducting layer topped with a solid nanoscopically perforated metallic film and then a dielectric interference film, can highly absorb (superabsorb) electromagnetic radiation in the entire visible range, and thus can become a platform for high-efficiency solar cells. The perforated metallic film and the ultrathin absorber in this broadband superabsorber form a metamaterial effective film, which negatively refracts light in this broad frequency range. Our quantitative simulations confirm that the superabsorption bandwidth is maximized at the checkerboard pattern of the perforations. These simulations show also that the energy conversion efficiency of a single-junction amorphous silicon solar cell based on our optimized structure can exceed 12%.
    [Abstract] [Full Text] [Related] [New Search]