These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Suppression of free fatty acid-induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells.
    Author: Deng YT, Chang TW, Lee MS, Lin JK.
    Journal: J Agric Food Chem; 2012 Feb 01; 60(4):1059-66. PubMed ID: 22191431.
    Abstract:
    It was reported that increased plasma levels of free fatty acids (FFAs) are associated with profound insulin resistance in skeletal muscle and may also play a critical role in the insulin resistance of obesity and type 2 diabetes mellitus. Skeletal muscle is the major site for insulin-stimulated glucose uptake and is involved in energy regulation and homeostasis. In this study, we used 12-O-tetradecanoylphorbol 13-acetate (TPA), a protein kinase C (PKC) activator, and palmitate to induce insulin resistance in C2C12 mouse skeletal muscle cells. Our data show that epigallocatechin gallate (EGCG) and curcumin treatment reduce insulin receptor substrate-1 (IRS-1) Ser307 phosphorylation, and curcumin is more potent to increase Akt phosphorylation in TPA induction. Moreover, we found that after 5 h of palmitate incubation, epicatechin gallate (ECG) can suppress IRS-1 Ser307 phosphorylation and significantly promote Akt, ERK1/2, p38 MAPK, and AMP-activated protein kinase activation. With a longer incubation with palmitate, IRS-1 exhibited a dramatic depletion, and treatment with EGCG, ECG, and curcumin could reverse IRS-1 expression, Akt phosphorylation, and MAPK signaling cascade activation and improve glucose uptake in C2C12 skeletal muscle cells, especially ECG and curcumin. In addition, treatment with these polyphenols can suppress acetyl-CoA carboxylase activation, but only EGCG could inhibit lipid accumulation in the intracellular site. These findings may suggest that curcumin shows the best capacity to improve FFA-induced insulin resistance than the other two, and ECG was more effective than EGCG in attenuating insulin resistance.
    [Abstract] [Full Text] [Related] [New Search]