These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical basis for differential deoxyadenosine toxicity to T and B lymphoblasts: role for 5'-nucleotidase.
    Author: Wortmann RL, Mitchell BS, Edwards NL, Fox IH.
    Journal: Proc Natl Acad Sci U S A; 1979 May; 76(5):2434-7. PubMed ID: 221924.
    Abstract:
    Deoxyadenosine metabolism was investigated in cultured human cells to elucidate the biochemical basis for the sensitivity of T lymphoblasts and the resistance of B lymphoblasts to deoxyadenosine toxicity. T lymphoblasts have a 20-to 45-fold greater capacity to synthesize deoxyadenosine nucleotides than B lymphoblasts at deoxyadenosine concentrations of 50--300 micron. During the synthesis of dATP, T lymphoblasts accumulate large quantities of dADP, whereas B lymphoblasts do not accumulate dADP. Enzymes affecting deoxyadenosine nucleotide synthesis were assayed in these cells. No substantial differences were evident in activities of deoxyadenosine kinase (ATP: deoxyadenosine 5'-phosphotransferase, EC 2.7.1.76) or deoxyadenylate kinase [ATP:(d)AMP phosphotransferase, EC 2.7.4.11]. The activity of 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) was increased 44-fold for AMP and 7-fold for dAMP in B lymphoblasts. A model for the regulation of deoxyadenosine nucleotide synthesis by 5'-nucleotidase activity is proposed on the basis of the observations.
    [Abstract] [Full Text] [Related] [New Search]