These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Temporal changes in cortical activation during distraction from pain: a comparative LORETA study with conditioned pain modulation.
    Author: Moont R, Crispel Y, Lev R, Pud D, Yarnitsky D.
    Journal: Brain Res; 2012 Jan 30; 1435():105-17. PubMed ID: 22192409.
    Abstract:
    Methods to cognitively distract subjects from pain and experimental paradigms to induce conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls or DNIC) have each highlighted activity changes in closely overlapping cortical areas. This is the first study, to our knowledge, to compare cortical activation changes during these 2 manipulations in the same experimental set-up. Our study sample included thirty healthy young right handed males capable of expressing CPM. We investigated brief consecutive time windows using 32-channel EEG-based sLORETA, to determine dynamic changes in localized cortical potentials evoked by phasic noxious heat stimuli to the left volar forearm. This was performed under visual cognitive distraction tasks and conditioning hot-water pain to the right hand (CPM), both individually and simultaneously. Previously we have shown that for CPM, there is increased activity in frontal cortical regions followed by reduced activation of the somatosensory areas, suggesting a pain inhibitory role for these frontal regions. We now observed that distraction caused a different extent of cortical activation; greater early activation of frontal areas (DLPFC, OFC and caudal ACC at 250-350 ms post-stimulus), yet lesser reduction in the somatosensory cortices, ACC, PCC and SMA after 350 ms post-stimulus, compared to CPM. Both CPM and distraction reduced subjective pain scores to a similar extent. Combining CPM and distraction further reduced pain ratings compared to CPM and distraction alone, supporting the dissimilarity of the mechanisms of pain modulation under these 2 manipulations. The results are discussed in terms of the differential functional roles of the prefrontal cortex.
    [Abstract] [Full Text] [Related] [New Search]