These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of nifedipine on choroidal blood flow regulation during isometric exercise. Author: Schmidl D, Prinz A, Kolodjaschna J, Polska E, Luksch A, Fuchsjager-Mayrl G, Garhofer G, Schmetterer L. Journal: Invest Ophthalmol Vis Sci; 2012 Jan 25; 53(1):374-8. PubMed ID: 22199246. Abstract: PURPOSE: To determine whether nifedipine, an L-type calcium channel blocker, alters choroidal blood flow (ChBF) regulation during isometric exercise in healthy subjects. METHODS: The study was carried out in a randomized, placebo-controlled, double-masked, two-way crossover design. Fifteen healthy male subjects were randomly assigned to receive either placebo or nifedipine on two different study days. Subfoveal ChBF was measured with laser Doppler flowmetry while the study participants performed isometric exercise (squatting). This was performed before drug administration and during infusion of nifedipine and placebo, respectively. Mean arterial pressure (MAP) and intraocular pressure (IOP) were measured noninvasively, and ocular perfusion pressure (OPP) was calculated as ⅔ MAP-IOP. RESULTS: MAP and OPP increased significantly during all squatting periods (P < 0.01). The increase in ChBF was less pronounced than the increase in OPP during isometric exercise. Nifedipine did not alter the OPP increase in response to isometric exercise, but it significantly augmented the exercise-induced increase in ChBF (P < 0.001 vs. placebo). Although ChBF increased by a maximum of 14.2% ± 9.2% during the squatting period when placebo was administered, the maximum increase during administration of nifedipine was 23.2% ± 7.2%. CONCLUSIONS: In conclusion, the data of the present study suggest that nifedipine augments the ChBF response to an experimental increase in OPP. In addition, it confirms that the choroidal vasculature has a significant regulatory capacity over wide ranges of OPPs during isometric exercise. (ClinicalTrials.gov number, NCT00280462.).[Abstract] [Full Text] [Related] [New Search]