These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels.
    Author: Clair E, Mesnage R, Travert C, Séralini GÉ.
    Journal: Toxicol In Vitro; 2012 Mar; 26(2):269-79. PubMed ID: 22200534.
    Abstract:
    The major herbicide used worldwide, Roundup, is a glyphosate-based pesticide with adjuvants. Glyphosate, its active ingredient in plants and its main metabolite (AMPA) are among the first contaminants of surface waters. Roundup is being used increasingly in particular on genetically modified plants grown for food and feed that contain its residues. Here we tested glyphosate and its formulation on mature rat fresh testicular cells from 1 to 10000ppm, thus from the range in some human urine and in environment to agricultural levels. We show that from 1 to 48h of Roundup exposure Leydig cells are damaged. Within 24-48h this formulation is also toxic on the other cells, mainly by necrosis, by contrast to glyphosate alone which is essentially toxic on Sertoli cells. Later, it also induces apoptosis at higher doses in germ cells and in Sertoli/germ cells co-cultures. At lower non toxic concentrations of Roundup and glyphosate (1ppm), the main endocrine disruption is a testosterone decrease by 35%. The pesticide has thus an endocrine impact at very low environmental doses, but only a high contamination appears to provoke an acute rat testicular toxicity. This does not anticipate the chronic toxicity which is insufficiently tested, and only with glyphosate in regulatory tests.
    [Abstract] [Full Text] [Related] [New Search]